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ABSTRACT Polyphasic linkage is a close analog of the al-
losteric and polysteric linkages shown by many biological
macromolecules. Like them, it gives rise to both homotropic and
heterotropic effects. It is governed by a group of linkage po-
tentials applicable to each separate phase and also, subject to
certain conditions, by a group of lower order applicable to the
whole system, globally. A good example of polyphasic linkage
is provided by sickle cell hemoglobin which, under suitable
conditions and subject to control by oxygen, precipitates out of
solution to form what appear to be microtubules. This is but one
instance of the way in which macromolecular assembly and the
formation of subeellular structures generally can be regulated
by various small molecules acting as ligands.

The concept of linkage, both homotropic and heterotropic as
it applies to the binding of ligands by a macromolecule in a
one-phase system, has been developed and applied in detail to
allosteric and polysteric (aggregating) systems in earlier papers
(1-4). In the present paper we show how this macroscopic
concept finds expression in the more general case of a polyphase
system containing any number of phases and components.

Polyphasic linkage
Consider a system consisting of three components X, Y, and Z
held at constant temperature and pressure. This may exist as
a single phase (2 degrees of freedom) or break up into a number
of different phases, of which, however, only three at most can
coexist in equilibrium. In that case there is a triple point (O
degrees of freedom). To obtain a clearer picture of the situation,
choose Z as the reference component. Then, in each phase the
binding potential pi (2) will be a function of the chemical po-
tentials ,'x and My of each of the two other components in ac-
cordance with the differential equation

dp =Ydyx + Ydgy [1]

where X = bjI/6Mt, and Y = 6jI/6L1, are, respectively, the
amounts of X and Y bound (in the most general sense of that
term) per unit of Z (in that phase). These barred quantities are
thus normalized extensive variables in distinction from the
intensive quantities T, p, and the is. Eq. 1 corresponds, apart
from sign, to the Gibbs-Duhem equation, p1 being minus the
chemical potential of the reference component Z.
When there is only one phase the system will be defined by

a two-dimensional surface in three-dimensional Cartesian space
where the x and y coordinates give the values of lix and Ay,
respectively, and the z coordinate gives the value of jt When
there are two phases, a and fl, each will be represented in the
same way and the equilibrium of the two will be defined by the

line of intersection of the two surfaces. Because this line rep-
resents equilibrium, it gives rise to the relationship

or
dna - dog = (Xa -X)dliz + (ya - Y)dliy = 0

dy _XYa -X:o
dju,- Ya - Yfl [2]

In general, each X and Y will be a function of both Iux and BAys
and integration of this equation gives uy as a function Aix,
subject to an undetermined constant which depends on the
choice of standard states. Eq. 2, or its integral, defines the
projection on the xy plane of the line of intersection of the two
surfaces in space and thus provides for a familiar type of phase
diagram. On one side of the line one surface lies above the other;
on the other side, it lies below it. Depending on the choice of
the reference component, the character of the diagram will be
different.

It will be noticed that Eq. 2 is the exact counterpart of the
Clausius-Clapeyron equation which describes the variation of
vapor pressure with temperature for a single substance. Its in-
tegration is simplified where there is no XY linkage in either
phase, so that the variables are separable. But whether or not
this is the case, and, indeed, whether or not analytical expres-
sions for X and Y are available, we know that the integral must
exist. Clearly, depending on the form of the functions X(lix, liy)
and Y(.ux, juy), the phase diagram may show all sorts of patterns.
We may be sure, however, that for each phase the binding
potential Jp by which X and Y in that phase are determined,
will be a single-valued function of lux and liy.

In accordance with what has just been said regarding equi-
librium between two phases, a triple point, representing equi-
librium among three phases, will be seen to represent the in-
tersection of three nonparallel surfaces, one for each phase, in
three-dimensional space. Any such point corresponds to a
unique pair of values of lx and uy and thus to a particular point
on the phase diagram-i.e., in the lAxlAy plane. Suppose we
construct a plane in our three-dimensional space which lies
indefinitely close to the triple point and cuts each of the three
phase separation lines. The result will be an indefinitely small
tetrahedron of which the three faces that intersect at the triple
point will become more and more nearly planar as the size of
the tetrahedron diminishes-i.e., as the constructed plane
moves toward the triple point. The triple point may be seen in
terms of the projection of this tetrahedron on the gixly
plane.

So far we have limited ourselves to a system of three com-
ponents. Suppose now we introduce additional components Q,

Abbreviation: Hb S. sickle cell hemoglobin.
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W. . . . Then we have a greater number of degrees of free-
dom and the possibility of a greater number of phases existing
together. In each phase, Eq. 1 now becomes

dji = XdMx + YdMy + 1dyq + WdywL [3]
For constant values of gq and gu this of course reduces to Eq.
2 and everything is the same as before except that the constant
of integration and, in general, X and Y will be functions of the
new variables. Thus, the character of the phase diagram will
depend on these new variables. In this enlarged case the binding
potential in each phase will be represented by an n - 1 di-
mensional surface in an n-dimensional space, where n is the
total number of components (including the reference compo-
nent). Thus, that which in the three-component case was a line
in a two-dimensional phase diagram becomes an (n - 2)-
dimensional surface in the n-component case. Similarly, that
which was originally a triple point now becomes an (n - 3)-
dimensional surface. And so on, until we reach a true point in
our n-dimensional space, a "multiple point," where the number
of degrees of freedom is reduced to zero. Any geometrical or
topological considerations applicable to the three-component
case can of course, formally, be generalized to the n-component
case although it is impossible to visualize n-dimensional
space.
From these considerations it is not difficult to see how phase

equilibria provide the basis for both homotropic (cooperative)
and heterotropic (control) linkage phenomena in a multicom-
ponent system. If in particular the reference component is a
macromolecule, we may regard the other components as its
ligands, and the phase equilibria play the same role as the al-
losteric and polysteric equilibria analyzed in previous discus-
sions of linkage. In fact we have a sequence or hierarchy of
control mechanisms conceptually all the same, resting as they
all do on the same principle of ligand-linked conformational
change (in the broadest sense of that term): allosteric (5),
polysteric (4), polyphasic.
Phase transitions illustrated by hemoglobin
A glimpse of the way in which these principles find expression
in a biological system is provided by sickle cell hemoglobin, Hb
S. an abnormal hemoglobin which is the cause of sickle cell
anemia in man (6). Although Hb S differs from normal human
hemoglobin (Hb A) by only one amino acid substitution in each
of the two (3 chains, its behavior is very different. At concen-
trations less than about 20%, it is indistinguishable from Hb A,
at least in respect to its oxygen-binding properties. At higher
concentrations, however, it undergoes an oxygen-linked phase
transition (7, 8) which generates a large amount of poopera-
tivity, measured values of the Hill parameter n rising well above
the value --3 characteristic of the solution (9). The system has
recently begen reinvestigated with the aid of a new method for
measuring oxygen binding and analyzed in terms of the fore-
going concepts (10, 11).

Briefly, the resulting picture may be described as follows.
When a solution of Hb S of sufficiently high concentration is
progressively deoxygenated, then at a certain critical oxygen
pressure, which depends on the protein concentration, deoxy-
hemoglobin begins to precipitate, forming a solid phase or gel
(Fig. 1). This consists of elongated aggregates, which have been
compared with microtubules. If the total amount of water in
the system is held constant (that is, if the system is closed with
respect to water but open with respect to oxygen), the liquid
phase becomes progressively more dilute as deoxygenation
proceeds and there will be a corresponding increase in the ac-
tivity (vapor pressure) of the solvent, water, as a result of the
water-hemoglobin interaction which, to a high degree of ap-
proximation, is independent of oxygenation. (This means that
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FIG. 1. Oxygen-binding curve (0) of Hb S under gelling condi-
tions (Hb S, 0.30 g/liter). Dotted curve is for Hb S in solution
throughout (0.15 g/liter). Arrow marks crisis point where gel phase
appears.

in the liquid phase there is no oxygen-water linkage mediated
by hemoglobin.) By plotting the measured values of AHO
against AO2 we obtain a phase diagram of the type discussed
above.

Because the total amount of oxygen present in the system is
the sum of the amounts present in each phase, from this it is
possible to calculate the overall binding curve of the system. We
know (or assume) a fixed water content and characteristic
binding curve for the solid phase. In the liquid phase the
amount of oxygen is given by the binding curve measured at
lower concentrations, at which there is no solid phase. (This is
known to be independent of concentration, another aspect of
the absence of any significant oxygen-water linkage in the
liquid phase.) The only additional information required is the
activity coefficient of hemoglobin in solution, which can be
obtained from osmotic pressure or sedimentation measurements
(12). (Note that the activity coefficient is simply an expression
of the homotropic interaction operative in water "binding.")
Conversely, we could work backwards from determinations of
the overall oxygen-binding curve and data on the activity
coefficient to obtain the chemical potentials of water and hence
construct the phase diagram. To the molecular biologist the case
of Hb S is of interest on the one hand as an example of how a
ligand-linked phase change can give rise to cooperativity and
on the other as an example of how structural changes (e.g., the
formation of a new phase) may be introduced and controlled
by a set of small ligands.
Phase changes involving AN and AV
We have assumed throughout this discussion that the temper-
ature T and pressure P are held constant. Now S and V may
be treated formally as ligands of chemical potential T and -P
respectively. Consequently, by substituting T or -P for one of
the Us we can obtain what might be called a hybrid phase di-
agram. Any such diagram will provide us with values of the
entropy or volume change associated with the transfer of a
particular component from one phase to another. For example,
if T is substituted for Ax and S for X in Eq. 2, we obtain

dTi = _ ya.-yhi [4]
This equation may also be written in a form moo, Aosely related
to calorimetry as

RT2dln= Ha-HadT Ya _yO
where y denotes activity and H is heat content (per n.9l of
macromolecule). In applying it, it must be remembered that
the chemical potentials of other ligands, such as X, are to be held
constant.
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A more general formulation
The case presented by Hb S is particularly simple becau
is only one liquid phase, and in the liquid phase the
water-oxygen linkage. But the principles involved in its
are the same as in the general case. Let us spell then
greater detail.

Suppose there are two phases, a and j3, and three
nents. Choose one of these as the reference compons
other two, X and Y, may be regarded as its ligands. T
system, as it moves along the phase line, is subject to
lowing equations, in which brackets stand for a functi
lationship:

my = [Ax
= [A#x],
= [Ax],

Y== [,]

Yf= [Mx]

X =fc + (1 -f)X,3
Y = fy-M + (I -f)Y.

Here, X and Y are the total amounts of X and Y in the
system per unit of reference component, and f represe
fraction of the reference component (macromolecule) I
in phase a. The first five equations result from the equil
between the two phases and from the binding potential ft
phase; the two other equations are stoichiometric. If the
is open with regard to both X and Y, as it is when X an'
free to pass in and out of the system as Mx is varied, t
course, although Ay, Ya, XtI,$a, and Ye are all unique
termined by Ax, we can say nothing as tof and, conseqt
the total amounts of the two ligands bound per macr
cule-namely, X and Y.

This situation is realized when we start from a point PI
phase diagram (Fig. 2) and add increasing amounts of X
the system is exposed to an infinite reservoir of Y of che
potential My. As X increases, so does y, until it reaches the
MAx on the phase line. At this point, phase : makes its appe
and the reference component begins to enter that phas
cause in general Xa # XV and Ya 5 Ye, the transition v

accompanied by a change of Y and Y at constant ux ai
The process, which we might describe as crossing the phas
will continue until phase a is exhausted. During its courn
two-phase system will show infinite cooperativity of I
binding like a simple allosteric system containing an in
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FIG. 2. Phase diagram. See text.
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number of binding sites (3). Because S and V may be regarded
as ligands, the process will be the exact counterpart of the
melting of ice or the vaporization of water. We know that the
relative amounts of the two phases-e.g., ice and water-are
completely undetermined at equilibrium. In order to specify
them it is necessary to fix the total volume (or entropy) of the
system. In the same way, in the case of ligands, it is necessary
to specify either X or Y in order to fix f and consequently to
determine the amount of the other. When this is done, then
instead of crossing the phase line, the system will move along
it as in the experiments on Hb S described above.
What happens when we have a fourth component W (as a

third ligand)? Then, our equations become expanded to

My = [Mx, MW], Xa = [MX, MW],**, WA = [Mx, Mw]

X =f~a + (1 -f)X#
yj=fya + (1 -Df)Y
W = fwa + (1 -f)Wi. [6]

Everything is just the same except that we now have one more
degree of freedom and the binding curve for Y depends not
only on Mx but also on Mw (or W). Clearly, the result can be

[5] generalized to any number of the components and phases. For
each additional phase it is necessary to know anotherf in order

ŵhole to specify the relative amounts of the phases and hence define
nts the the state of the system. This can be achieved by specification
present of the total amount of any additional normalized extensive
librium property (Y, S. V, etc.)
or each As an illustration of these ideas we have, in the last section,
system chosen Hb S, where the phase behavior is controlled by the true
d Y are chemical binding of a ligand (oxygen). Another quite different
:hen of example is provided by a mixture of two largely immiscible
Dly de- ligands such as benzene and water with added solutes, say al-
uently, cohol and acetone. Here there is no chemical binding, and in
Dmole- this special case the two liquid phases are sufficiently dilute to

be describable by Henry's and Raoult's laws. This facilitates
in the formulation of the binding potential for each individual phase.
while Both examples bring out the complexities involved in any rig-
emical orous definition of solubility.
-rvalue On the existence of a binding potential in polyphasic
arance
se Be- systems
will be In the case of a one-phase system, we know of course that there
nd My. is always a binding potential Ai, which is minus the chemical
e line, potential of the reference component and is but one member
se, the of a group of linkage potentials applicable to the system. The
ligand question arises as to whether anything like this holds in a
ifinite polyphasic system.

By specifying the total volume V, total entropy S, and total
amount of each of the n components of a thermodynamic sys-
tem of any given number of phases, we completely determine
its state. (In case this is not clear it will become so from a con-
sideration of Eq. 5 or 6.) This means that the total energy and
the total amount of each phase are determined by these n + 2
extensive variables. From the energy function so defined we
obtain values of the corresponding n + 2 intensive quantities
T, P. and the chemical potentials M of all the components as the
appropriate first partial derivatives. (Remember that formally
we may treat entropy and volume as components of "chemical
potential" T and P, respectively.)
We can always apply a set of Legendre transformations to

the energy function as defined above to obtain a set of new
functions in which some of the extensive variables are replaced
by corresponding intensive ones. These functions are a source
of useful linkage relations. But in doing this we are limited to

AX such transformations as lead to variables in terms of which the
state of the system-in particular, the sizes of the phases and

Ay
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the value of the energy-are defined. In the case of a one-phase
system this prevents our passing from the energy function de-
fined in terms of the n + 2 extensive variables to its opposite
defined wholly in terms of the intensive ones. It is an expression
of the fact that the energy is first-order homogeneous in the
extensive variables, with the result that its opposite does not
exist. (This means that the Jacobian of its first partial deriva-
tives-in other words, the Hessian-vanishes; and it is this
which is the source of the Gibbs-Duhem equation.)

In the case of the one-phase system this difficulty can be
overcome by fixing the value of one of the extensive variables,
which we identify as the reference component (usually a
macromolecule). The result is that the energy, now normalized
as the energy per unit reference component, becomes a function
of n + 2 - 1 normalized extensive variables. This function
cannot be first-order homogeneous and is therefore susceptible
to all possible Legendre transformations. These transformations
form a group of order 2n + 2-1 which is isomorphic with the
group of potentials which it generates and has the symmetry
of an n + 2 - 1 dimensional rectangle in hyperspace. Of this
group, the binding potential 1x is a particularly useful
member.

In the case of a polyphasic system (p phases) it is necessary
to fix the value of one additional extensive variable for each
added phase in order to determine the relative sizes of the
phases, and consequently the number of extensive variables
susceptible to transformation is reduced from n + 2 - 1 to n
+ 2- p, with the result that the order of the group of permitted
Legendre transformations and the corresponding group of
linkage potentials is reduced to 2n + 2-P. Again the group will
have the symmetry of a multidimensional rectangle, in this case
n + 2- p. It will be seen that n + 2 - p is the number of de-
grees of freedom of the system as given by the phase rule in its
familiar form.
A p-phase system in which the amounts of p components are

fixed, so that the system is characterized by a 2n + 2-p order
group of linkage potentials, may be described as "well defined."
(We might also describe it as being normalized with respect to
p extensive variables). Now it will be seen that, by fixing the
total amounts of p components, we are in fact combining them
into a single multiple component (recall the definition of a
component). Thus, the binding potential ji of a well-defined
system may be seen as minus the chemical potential of a mul-
tiple component whose properties are a weighted mean of those
of its constituents. Indeed, looked at entirely-from the outside
there is really no difference between a well-defined one-phase
system of two components and a well-defined two-phase system
of three components, or, more generally, between a well-de-
fined p-phase system of n components and a well-defined (p
+ 1)-phase system of n + 1 components.

These considerations apply to any system of p phases. It
should be realized, however, that any point at which a new
phase makes its appearance will be a singular point-although
the energy and its first derivative are continuous, the second
and higher order derivatives are not. Such a point was observed
by Gill et al. (10) in experiments on the oxygen binding of Hb
S and was called a "crisis point" (see Fig. 1). It was the point at
which the gel first made its appearance.

If the system is well defined only up to a certain number of
phases, then when additional phases are introduced it becomes
indeterminate and this will be reflected in its geometrical
representation in hyperspace. Thus, the famous ruled surface
in 3-space described by Gibbs will have its counterpart in a
corresponding surface in hyperspace. All this points to the way
in which linkage and cooperativity can be seen in terms of the
geometry and topology of a multidimensional plot. For an essay
on the relationship between thermodynamics and geometry
see the article by Weinhold (13).

Comparison of polyphasic and allosteric systems
The preceding considerations bring out the close analogy be-
tween an allosteric system and a polyphasic one. Consider a
two-phase system. The parameter f (see Eqs. 5 and 6), which
specifies the distribution of the reference component between
the two phases, corresponds exactly to the single v (given by L)
which represents the conformational equilibrium in the case
of a two-state allosteric system (5). Subject to activity coeffi-
cients, which are uniquely determined by the binding potentials
in each phase, it is an equilibrium constant, and, just as in the
allosteric case, its value is determined by the chemical potentials
of the various ligands (or their amounts per unit of reference
component) in each of the phases.

In the case of a p-phase system there are p - 1 fs, corre-
sponding to p - 1 equilibrium constants, to be determined;
analogously, in the case of an allosteric system, where there are
r conformations, there are r - 1 Ls (or v ratios) to be deter-
mined. Thus, in either case we are concerned with the effect
of a ligand, or set of ligands, on an equilibrium constant. The
only difference between the two cases is a practical one in-
volving activity coefficients. In the allosteric case, where the
macromolecule is present in a single phase, we may safely forget
them, because, to a high degree of approximation, they cancel
out. In the polyphasic case this is not so. The most familiar bi-
ological example of a polyphase system is whole blood which,
with good approximation, may be treated as a two-phase system
consisting of erythrocytes and plasma. It is interesting that in
the case of sickle cell anemia there is appearance and disap-
pearance of a new phase within the erythrocytes during the
course of circulation. This might be taken as an example of a
conformational change within a conformational change such
as has sometimes been postulated in the case of allosteric sys-
tems.

All this brings out two things. In the first place, from a formal
and operational point of view, it establishes the broad generality
of the concept of a group of linkage potentials, which apply
equally to any well-defined system, whether of one, two, or
more phases. In the second place, from a physical point of view,
it reveals the underlying sameness of three mechanisms of
regulation and control in biological systems-allosteric,
polysteric, and polyphasic-all of which rest on the principle
of ligand-linked "conformational" change.
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